

## Introduction

Methods and issues around heterogeneity

### (Remarks on the introduction of $I^2$ , and related events)

Julian Higgins

bristol.ac.uk



## The University of Reading, 1993-

THE UNIVERSITY OF READING



Department of Applied Statistics

#### **Exploiting Information in Random Effects Meta-analysis**

JULIAN P.T. HIGGINS

Submitted for the degree of PhD

September 1997





#### bristol.ac.uk



## The University of Reading, 1993-

#### THE UNIVERSITY OF READING



Department of Applied Statistics

#### Exploiting Information in Random Effects Meta-analysis

JULIAN P.T. HIGGINS

Submitted for the degree of PhD

September 1997

| Chapter | ·3 Fre | equentist approaches to meta-analysis                   | 33 |
|---------|--------|---------------------------------------------------------|----|
| 3.1     | A gene | ral approach to meta-analysis                           | 34 |
|         | 3.1.1  | Fixed effect model                                      | 34 |
|         | 3.1.2  | Random effects model                                    | 35 |
|         | 3.1.3  | Power of the test for heterogeneity: a simulation study | 37 |

- Study *i* estimates parameter  $\theta_i$
- Heterogeneity:
  - $\theta_i \neq \theta_i$  for at least one pair
- A test for heterogeneity has poor properties and asks an uninteresting question



## Imperial College London and MRC Cambridge, 1998-

- Post doc on Medical Research Council grant (Simon Thompson, Doug Altman, Jon Deeks)
- Included an aim to find a better way to measure heterogeneity
- Solved?

$$I^{2} = \frac{Q - (k-1)}{Q} \times 100\% \qquad \qquad I^{2} = \frac{\widehat{\tau}^{2}}{\widehat{\tau}^{2} + \widehat{\sigma}^{2}}$$

(*k* = number of studies)

- *I* originally stood for "intraclass"
- (I now say it stands for "inconsistency")



## Cochrane Colloquium, Lyon 2001

#### An alternative to testing for heterogeneity in a meta-analysis

Julian Higgins and Simon Thompson

MRC Biostatistics Unit, Cambridge, UK



#### **Concluding remarks**

- The extent of heterogeneity is important for determining consistency, and hence generalizability of review findings
- The test is a poor way of measuring this
- H and I<sup>2</sup> quantify the extent of heterogeneity
- Uncertainty about the heterogeneity can be described
- H and/or I<sup>2</sup> should be presented in Cochrane reviews in preference to the test
- Clinical aspects of studies and size of treatment effect must also play an important rôle

#### bristol.ac.uk

## University of BRISTOL

# *I*<sup>2</sup> *was* presented (...and misunderstood)





## Univ. Reading and MRC Cambridge, 1993-97

#### THE UNIVERSITY OF READING



Department of Applied Statistics

#### **Exploiting Information in Random Effects Meta-analysis**

JULIAN P.T. HIGGINS

Submitted for the degree of PhD

September 1997

| Chapter | 5 Us   | ing external information in a Bayesian meta-analysis        | 61 |  |
|---------|--------|-------------------------------------------------------------|----|--|
| 5.1     | Empiri | ical prior distributions for heterogeneity                  | 62 |  |
|         | 5.1.1  | Example: an empirical prior distribution                    | 63 |  |
|         | 5.1.2  | Discussion                                                  | 64 |  |
| 5.2     | Includ | uding trials of a third treatment                           |    |  |
|         | 5.2.1  | General model formulations                                  | 65 |  |
|         | 5.2.2  | The assumption of equal heterogeneity parameters            | 68 |  |
|         | 5.2.3  | Scenario 1: one experimental treatment and two controls     | 68 |  |
|         | 5.2.4  | Scenario 2: two experimental treatments with information on |    |  |
|         |        | (placebo) controlled trials                                 | 69 |  |





## MRC Cambridge, 2006-



Keywords: meta-analysis; Bayesian methods; heterogeneity; prior distributions



- I owe particular debts to
  - the MRC
  - Simon Thompson
  - Doug Altman and Jon Deeks
  - David Spiegelhalter
  - Anne Whitehead
  - Ian White
  - Cochrane



