Latent class models for individual participant data metaanalyses of diagnostic test accuracy studies with imperfect reference standards

Zelalem Negeri, Ph.D.

Postdoctoral Fellow

Department of Epidemiology Biostatistics and Occupational Health
McGill University

Joint work with:

Brooke Levis, Yin Wu, Nandini Dendukuri, Brett Thombs and Andrea Benedetti

A day with ... SMG May 11, 2021

1. Background – Overview

- The Patient Health Questionnaire-9 (PHQ-9) is a nine-item questionnaire widely used to screening for major depression
- The PHQ-9 has been evaluated against various reference standards:
 - Semi-structured interviews (e.g., SCID)
 - Fully structured interviews (e.g., CIDI, MINI)
- The PHQ-9 database:
 - Accrued by the DEPRESsion Screening Data Project (<u>www.depressd.ca</u>)
 - More than 100 studies comprising of about 44,000 participants and over 4,500 major depression cases

1. Background – The Problem

- The PHQ-9 database:
 - Multiple reference standards (e.g., SCID, CIDI MINI) with different depression diagnosing capabilities
 - A single reference standard per participant
- Wu et al. (2020):
 - Synthesized three individual participant data meta-analyses (IPDMAs) that included 69,405 participants from 212 studies
 - The MINI categorized major depression more frequently relative to the SCID
- This could influence estimates of PHQ-9 sensitivity, specificity, and depression prevalence

2. Objectives

- We aimed to propose and validate LCMs for the IPDMA of the PHQ-9 to accurately estimate:
 - PHQ-9 sensitivity and specificity
 - Reference standards' sensitivity and specificity
 - Depression prevalence

3. Methods – Frequentist LCMs

- We propose and validate both Frequentist- and Bayesian-based LCMs by assuming the true depression status as unknown
- Our Frequentist LCM assumes a common sensitivity and specificity across studies but study-specific prevalence
 - We additionally assume conditional dependence between PHQ-9 and reference standards (i.e., FCDLCM)
 - We use the expectation-maximization (EM) algorithm to estimate model parameters

3. Methods – Bayesian LCMs

- We also propose a Bayesian conditional dependence LCM (BCDLCM) by introducing covariance parameters as in the FCDLCM
- The BCDLCM assumes the multinomial distribution to model the observed cell frequencies (TPs, FPs, FNs and TNs) given the unobserved disease status and model parameters
 - We use the Gaussian distribution as priors for the logit-transformed pooled sens, spec, depression prevalence, and random effects; and the Uniform distribution as hyper-priors for the precision parameters
 - We use Markov Chain Monte Carlo (MCMC) as implemented in the R package rjags to sample from the marginal posterior distribution of each model parameter

4. Results – Simulations

Table 1: Results when true PHQ-9 sens=spec = 0.7, $\tau_1^2 = 1.2$, $\tau_2^2 = 0.6$, $\rho = -0.6$, k = 30, n = 134, $\pi = 10\%$ when data were generated assuming conditional dependence and MINI as imperfect

Model	Bias				RMSE			
	PHQ Sens	PHQ Spec	MINI Sens	MINI Spec	PHQ Sens	PHQ Spec	MINI Sens	MINI Spec
BREM	-0.22	-0.02	NA	NA	0.05	0.00	NA	NA
FCDLCM	-0.07	0.01	0.02	-0.05	0.03	0.00	0.01	0.01
BCDLCM	0.02	0.10	-0.36	-0.01	0.02	0.02	0.15	0.00

BREM=Bivariate Random-Effects Model; FCDLCM=Frequentist Conditional Dependence Latent Class Model; BCDLCM=Bayesian Conditional Dependence Latent Class Model

4. Results – Real Data

Table 2: Estimates of PHQ-9 and MINI sensitivity and specificity in % when PHQ-9 was compared against the MINI interview at the PHQ-9 standard cut-off of ≥ 10

Model	PHQ Sens (95% CI)	PHQ Spec (95% CI)	MINI Sens (95% CI)	MINI Spec (95% CI)
BREM	74 (67, 79)	89 (86, 91)	NA	NA
FCDLCM	83 (73, 90)	94 (87, 96)	91 (87, 96)	99 (99, 100)
BCDLCM	82 (73, 92)	92 (87, 95)	68 (58, 82)	97 (94, 99)

BREM=Bivariate Random-Effects Model; FCDLCM=Frequentist Conditional Dependence Latent Class Model; BCDLCM=Bayesian Conditional Dependence Latent Class Model

5. Conclusions

 We proposed robust models that can handle multiple imperfect reference standards

 As expected, the BREM performed well when diagnostic interviews were assumed perfect, otherwise underestimated PHQ-9 sensitivity

 LCMs were shown to be alternative approaches for IPDMA to account for differences in reference standard accuracy