

Introduction to diagnostic test accuracy network meta-analysis

Prof. Areti-Angeliki Veroniki

St. Michael's Hospital, Unity Health Toronto Institute of health Policy, Management and Evaluation, University of Toronto

Dr. Sofia Tsokani

Methods Support Unit, Cochrane Central Executive Team School of Medicine, Aristotle University of Thessaloniki, Greece

Trusted evidence. Informed decisions. Better health.

November 20th, 2024

Outline

- 1. Introduce Diagnostic Test Accuracy (DTA) Studies
- 2. Discuss about process of conducting a systematic review with DTA meta-analysis
- 3. Present how to build the network geometry of DTA studies
- 4. Extend DTA meta-analysis methods to DTA network meta-analysis methods (DTA-NMA)
- 5. Identify potential implications in DTA-NMA

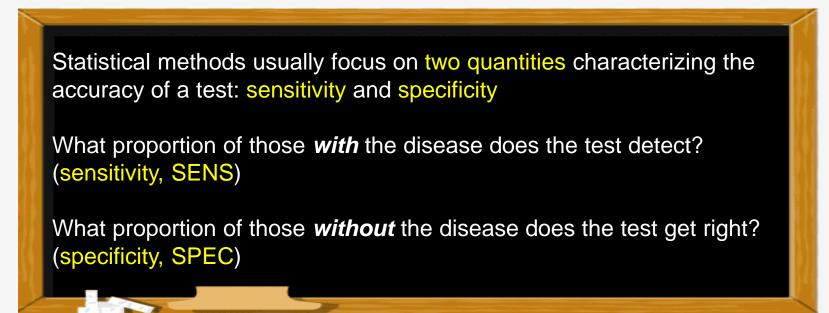
Which of the following best describes your role?

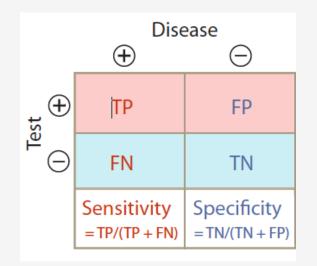
- Editor of systematic reviews
- User of systematic reviews
- Systematic reviewer
- Statistician
- Methodologist
- Other

Trusted evidence. Informed decisions. Better health.

Poll Question 2

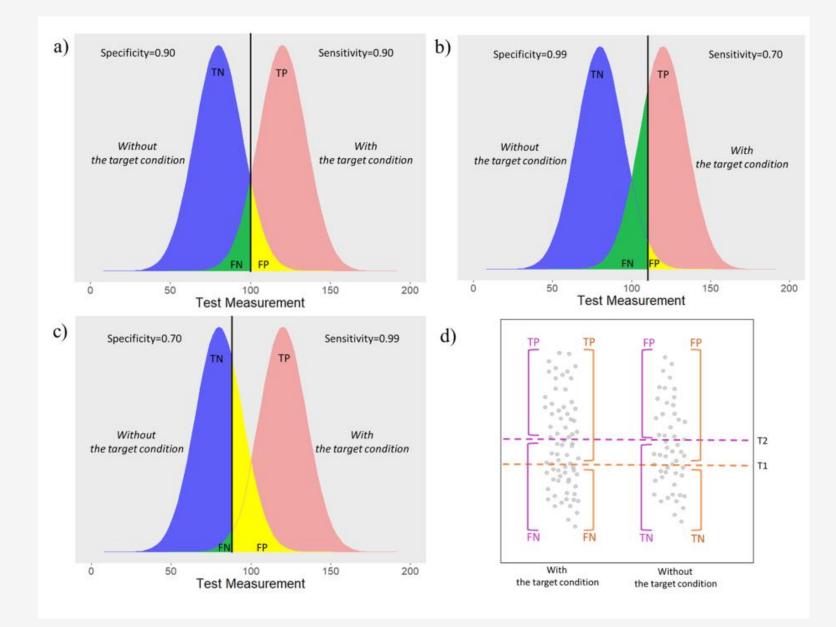
What is your familiarity with Meta-Analysis of Diagnostic Test Accuracy studies?


- I know about it and have used it.
- I am aware of it, but have not applied it before.
- I have no idea what it is.


Trusted evidence. Informed decisions. Better health.

Diagnostic Test Accuracy studies

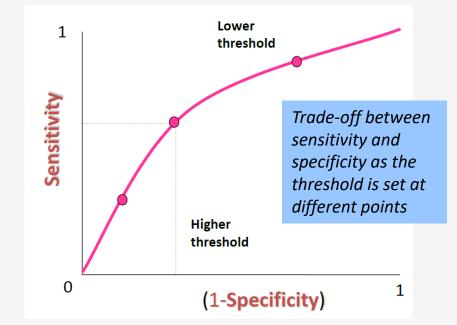
- Diagnostic Tests are used to ascertain whether an individual has or not a disease
- Most tests are imperfect, errors will occur not always accurate
- 'Reference standard' is a test that can be used to estimate the accuracy of the imperfect tests
- Binary outcome: positive / negative test result



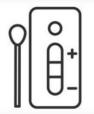
Thresholds

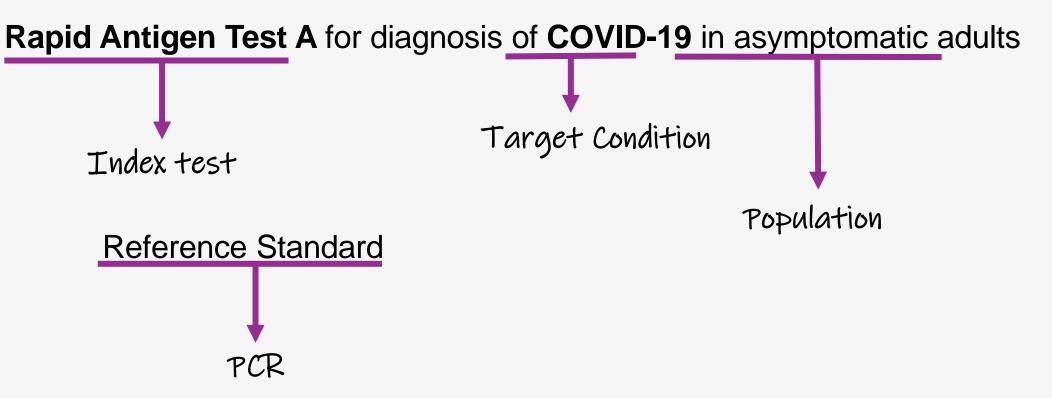
- Binary markers (X-rays)
- Continuous markers (blood tests)
 - Require setting cut-off values (thresholds)
 - Trade-off between sensitivity and specificity

There is a **trade-off** between sensitivity and specificity as the threshold is set in **different points**!



Threshold effect


- The same threshold can imply different SENS and SPEC in different groups
- A solution can be to perform Meta-Analysis at each threshold separately or a subset of thresholds


BUT...

- Restricting to a common threshold reduces data
- The common threshold may not be the threshold a reader wants to know about

Example: The anatomy of a DTA research question

Example: 2x2 table

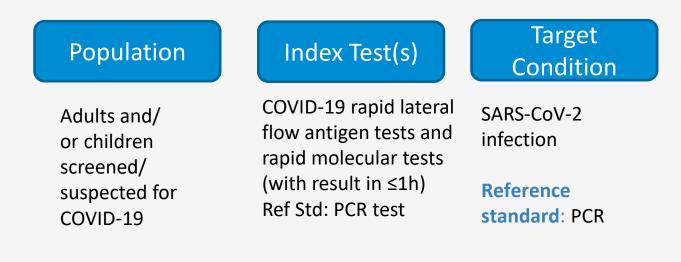
Index test: Rapid Antigen test A for COVID-19 Reference Standard: RT-PCR

		Reference standar		
		Positive (D+) Negative (D-)		Total
	Positive (T+)	TP= 27	FP= 2	Positive Test Results = 29
Index Test Result	Negative (T-)	FN= 3	TN= <mark>98</mark>	Negative Test Results = 101
Result	Total	Diseased= 30	Non-Diseased= 100	Sample size = 130

- Sensitivity, Specificity (90%, 98%)
- Test identified 90% of COVID-19 diseased and 98% of non-diseased individuals

Cochrane

Steps of a Systematic Review of DTA studies



1. Define the question

- 2. Define objectives and eligibility criteria
- 3. Develop protocol
- 4. Search for studies
- 5. Study selection and Data collection
- 6. Assess bias and applicability
- 7. Analyze and present results
- 8. Interpret results and draw conclusions

Review Question

What is the diagnostic accuracy of rapid antigen and rapid molecular tests for the diagnosis of the SARS-CoV-2 infection in adults and children according to the reference standard PCR test?

Intervention vs DTA reviews

Components of Intervention review research question (PICO)

- **P** opulation
- Interventions
- **C** omparators
- O utcomes
- **S** tudy design

Components of Intervention review research question (PIT)

- **P** opulation

Diagnostic Test Accuracy (DTA) Reviews

Intervention Reviews

- I ndex Test(s)
- **T** arget Condition
 - Reference Standard
- **S** tudy design

Steps of a Systematic Review of DTA studies

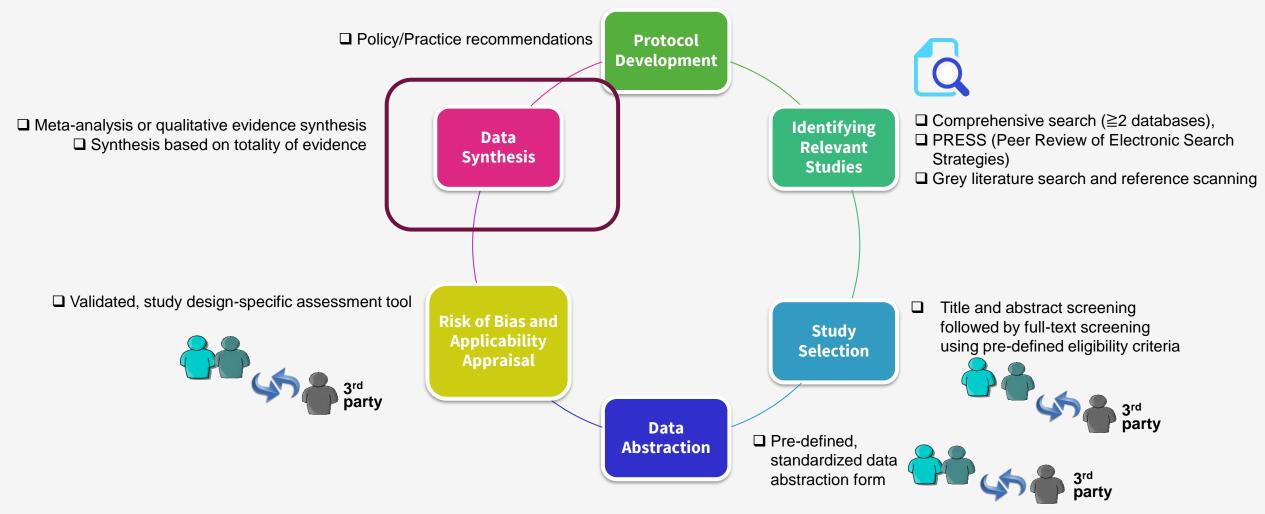
1. Define the question

- 2. Define objectives and eligibility criteria
- 3. Develop protocol
- 4. Search for studies
- 5. Study selection and Data collection
- 6. Assess bias and applicability
- 7. Analyze and present results
- 8. Interpret results and draw conclusions

Primary objective To assess the diagnostic accuracy of rapid antigen and rapid molecular tests for the diagnosis of the SARS-CoV-2 infection in adults and children

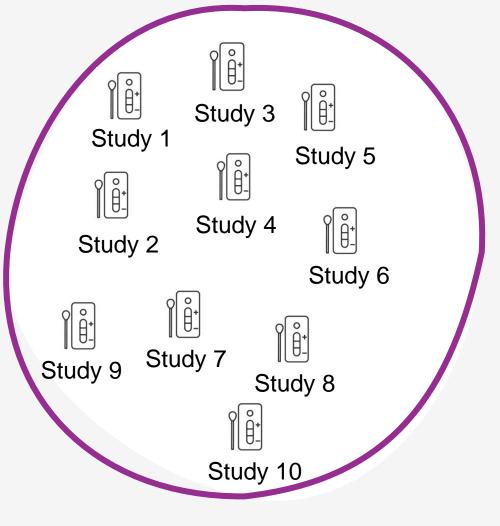
To assess the accuracy of clinical assessment in SARS-CoV-2 infection :

Objectives of the review


- according to sample type (e.g., saliva, nasal swab)
- In symptomatic and asymptomatic participants

Steps of a Systematic Review of DTA studies

https://training.cochrane.org/handbook


PICOS(T) framework, developed using PRISMA-P
Register with PROSPERO (and publish in open access journal)

- Deeks JJ et al. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Version 2.0. Cochrane. 2023
- McInnes MDF et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA. 2018
- Whiting PF et al. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann Intern, 2011
- Yang B et al. QUADAS-C: A Tool for Assessing Risk of Bias in Comparative Diagnostic Accuracy Studies. Ann Intern Med. 2021

Meta-analysis 10 studies exploring accuracy of Test A for Covid-19

- Summarize information
- Synthesis of information from individual studies, addressing the same research question
- Statistically combine study-results to obtain summary estimates

The generic meta-analysis process

- 1. Calculation of an overall summary (average) of high precision, coherent with all observed data
- 2. Typically a "weighted average" is used where more informative (larger) studies have more say
- 3. Assess the degree to which the study results deviate from the overall summary
- 4. Investigate possible explanations for the deviations

What is **SO critical** that we have to consider in meta-analyses? **Test threshold!!!**

- Accuracy varies with index test threshold
- Can we average over test thresholds?
- How would we interpret the result?
- Thresholds can be important for both index and reference tests

The generic meta-analysis process

Challenges for DTA reviews

- There are **two summary statistics** for each study: **SENS** and **SPEC**
- Threshold effects induce correlations between SENS and SPEC
 - Often thresholds vary between studies
- Heterogeneity is the norm substantial variation in sensitivity and specificity
 - Different groups can have different sensitivities and specificities at the same threshold

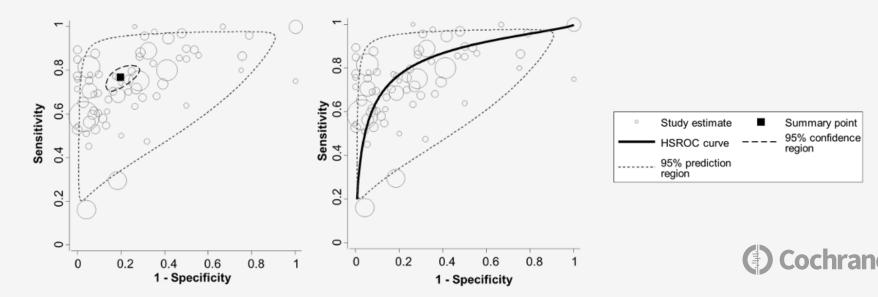
Pooling sensitivity and specificity *separately*?

- Ignores threshold as source of heterogeneity
- Is biased towards studies with high sensitivity or specificity

 Pooled estimates of sensitivity and specificity may be biased towards 1 or 0, depending on study results

Cochrane

Multiple studies – Single index test


- Systematic review evaluating a single index test:
 - \circ $\,$ Aims to evaluate a diagnostic test vs. a reference standard $\,$
- How does test accuracy vary with clinical & methodological characteristics?
- The outcome is to model the test results (binary outcome: positive / negative test result) assess the diagnostic accuracy of a single test

Bivariate model

- Single threshold
- Summary point

HSROC model

- Multiple thresholds
- Summary curve

Reitsma J et al. Journal of Clinical Epidemiology. 2005; Rutter C, Gatsonis C. Stat Med. 2001

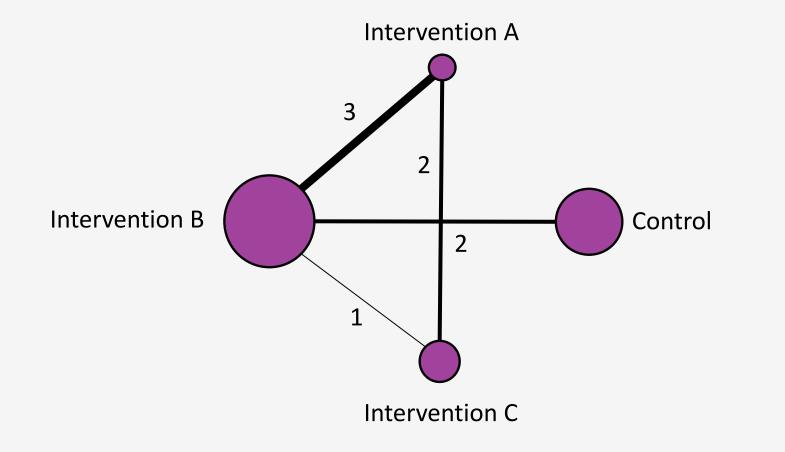
Multiple Diagnostic Tests vs. Multiple Interventions

• Diagnostic tests are usually compared in the same subjects within a study

Correlated observations – the NMA methods should account for this correlation structure
Should estimate sensitivity & specificity: bivariate model

- Interventions are compared between independent groups (different groups of patients)
 - Use effect measures (OR, RR, RD) to compare effectiveness among treatments

		Interventions	Diagnostic tests
	Aim	Compare two treatments	Discriminate two groups
Pairwise	Groups	2 interventions	With/without target condition
meta-analysis	Outcome	Event yes/no	Test positive/negative
	Proportions	r_1, r_0	Sens, 1 – Spec
	Effect measures	$RD = r_1 - r_0$	J = Sens + Spec - 1
		$OR = \frac{r_1(1-r_0)}{r_0(1-r_1)}$	$DOR = \frac{Sens*Spec}{(1-Sens)(1-Spec)}$
	Modeling	Univariate model, contrast-based	Bivariate model, arm-based
Multivariate	Groups	2 interventions	With/without target condition
pairwise	Outcome	$K \ge 2$ outcomes	$K \ge 2$ tests
meta-analysis	Measures	Pairs of proportions	Pairs of accuracy measures
		$(r_{1k}, r_{0k}), k = 1, \dots, K$	$(\operatorname{Sens}_k, 1 - \operatorname{Spec}_k), k = 1, \dots, K$
	Effect measures	$RD_k, k = 1, \dots, K$ $OR_k, k = 1, \dots, K$	$J_k, k = 1, \dots, K$ $DOR_k, k = 1, \dots, K$
	Modeling	Multi(<i>K</i>)variate model	Multi $(2K)$ variate model

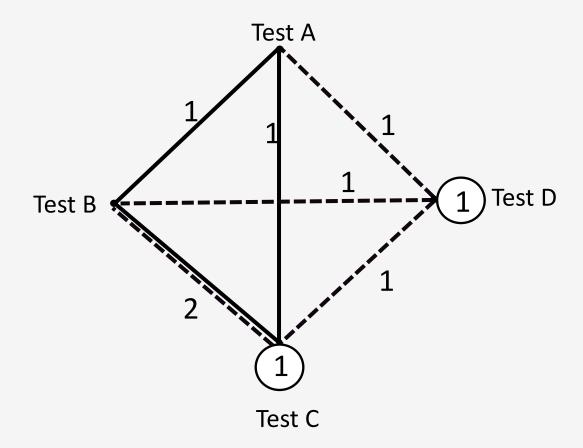

RD = risk difference; OR = odds ratio; DOR = diagnostic odds ratio; J = Youden index.

Rücker G. Springer, Cham. 2018

Network of interventions

All interventions and the control group are depicted in the network plot

Studies compare at least 2 interventions (2-arm, 3-arm, etc.)



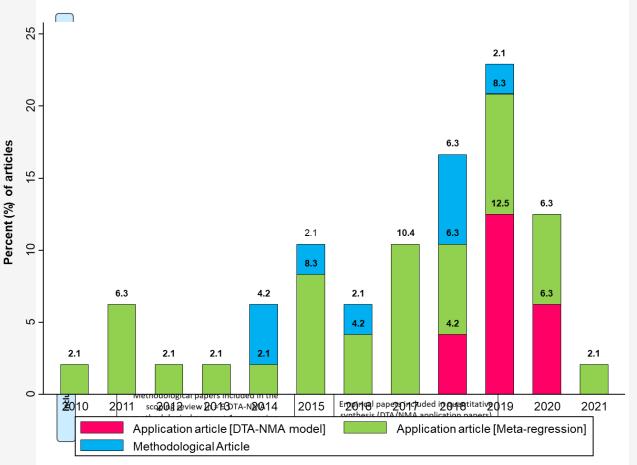
Study ID	Type of study	Intervention comparisons
1	2-arm	B vs C
2	3-arm	A vs B vs C
3	2-arm	A vs C
4	2-arm	B vs Control
5	2-arm	A vs B
6	2-arm	A vs B
7	2-arm	B vs Control

Cochrane

Network of diagnostic tests

Reference standard (RS) is not considered in the network but as a bridge for comparing index tests. Index test vs RS: single-test study

Study ID	Type of study	Data	Test comparisons	Edges/Circles in the network
1	Single- test	Test D vs RS	Test D vs. RS	Circle for test D
2	Paired- test	Test B vs RS Test C vs RS	Test B vs. Test C	Dashed line connecting tests B and C
3	Triple- test	Test A vs RS Test B vs RS Test C vs RS	Test A vs. Test B Test A vs. Test C Test B vs. Test C	Closed triangle with solid line connecting tests A, B, and C
4	Paired- test	Test B vs RS Test D vs RS	Test B vs. Test D	Dashed line connecting tests B and D
5	Single- test	Test C vs RS	Test C vs. Reference	Circle for test C
6	Paired- test	Test A vs RS Test D vs RS	Test A vs. Test D	Dashed line connecting tests A and D
7	Paired- test	Test C vs RS Test D vs RS	Test C vs. Test D	Dashed line connecting tests C and D


Scoping Review of DTA-NMA methods

Scoping Review

- Search of PubMed, Web of Science, Scopus databases up until the 3rd March 2021
- Methodological and application papers comparing the accuracy of at least three index tests using:
 - hierarchical meta-regression models
 - models developed specifically for DTA-NMA

() Cochrane

DTA-NMA in the literature

Abbreviations: DOR, diagnostic odds ratio; SE, standard error; DTA, diagnostic test accuracy; NMA, network meta-analysis; HSROC, hierarchical summary receiver operating characteristic a 2 × 2 data includes the number of true positives, true negatives, false positives and false negatives.

 Properties of DTA-NMA models differ and may influence interpretation and decisionmaking

DTA-NMAs:

- 'Borrow strength' across studies by simultaneously analysing multiple DTA studies
- Account for between-study correlations between sensitivity and specificity induced through threshold effects

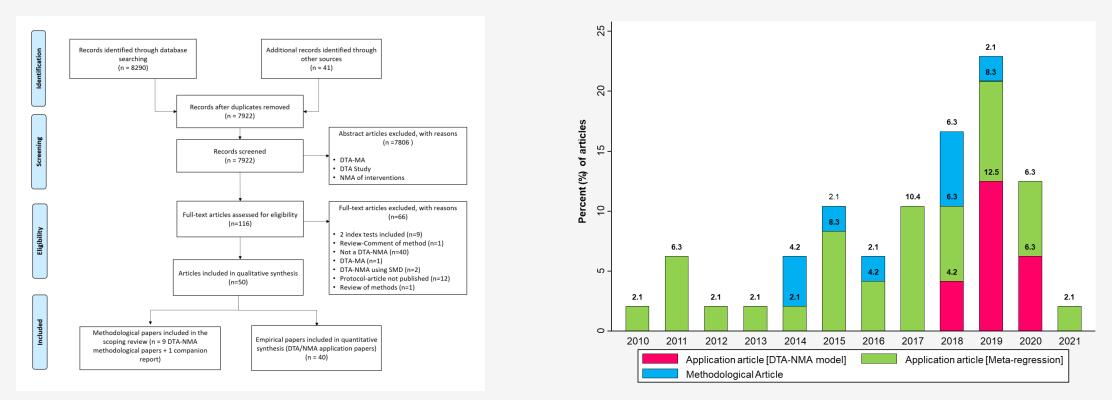
Popula

Joint classification tables

Index test: Rapid Antigen test A, Rapid Antigen test B for COVID-19 Reference Standard: RT-PCR

		Reference stand		
		Positive (D+)	Negative (D-)	Total
Index	Positive (T+)	TP= 27	FP= 2	Positive Test Results = 29
Test A	Negative (T-)	FN= <mark>3</mark>	TN= <mark>98</mark>	Negative Test Results = 101
Result	Total	Diseased= <mark>30</mark>	Non-Diseased= 100	Sample size = 130

		Reference stand	Reference standard Result		
		Positive (D+)	Negative (D-)	Total	
Positive		TP= 17	TP= 17 FP= 9		
Index	(T+)	IP-1/	FP- 3	Results = <mark>26</mark>	
Test B	Negative	FN= 13	TN= <mark>91</mark>	Negative Test	
	(T-)			Results = 104	
Result	Total	Diseased= 30	Non-Diseased= 100	Sample size = 130	


		Index Test	Index Test A Result			
		Positive (D+)	Negative (D-)	Total		
	Positive	TP= 20	FP= 10	Positive Test		
Index	(T+) Negative (T-)	IP= 20	LL= TO	Results = <mark>30</mark>		
IIIUEA		FN= 10		Negative		
Test B			TN= <mark>90</mark>	Test Results		
Result				= 100		
Result			Non-	Sample size		
	Total	Diseased= 30	Diseased=	=		
			100	130		

Individual Participant Data required

Application Papers

- Majority employed bivariate/HSROC meta-regression models
- 2x2 tables were available for 32 networks
 - 8 of these reported data at multiple thresholds per study

DTA-NMA in the literature

	Format of data tables required ^a	Arm-based model	Can model imperfect reference standards	Can model multiple thresholds	Type of studies that can be modelled	Bayesian setting	Accounts for correlation between tests	Models more than two index tests	Software
Bivariate meta-regression [21]	2 × 2	Yes	No	No	Any	No	No	Yes	R (CopulaDTA [24],Ime4 [25], mada [26],meta4diag [27],Metatron [28],Mvmeta [29] Stata (meqrlogit [30])
HSROC meta-regression [22]	2 × 2	Yes	No	Yes ^d	Any	No	No	Yes	OpenBUGS/ WinBUGS [31]R(<i>NMADiagT</i> [32])
Trikalinos 2014 [5]	Joint classification	Yes	No	No	Single- / Paired-test	Yes	Yes	No ^b	R (<i>rjags</i> [33])
Menten-Lesaffre 2015 [4]	2 × 2	No	Yes ^c	No	Paired- / Multiple-test	Yes	No	Yes	OpenBUGS/ WinBUGS [31]
Dimou 2016 [3]	Joint classification	Yes	No	No	Single- / Paired-test	No	Yes	No ^b	Stata (<i>mvmeta</i> [34])
Cheng 2016 [Model A] [8]	Joint classification	Yes	No	No	Any	Yes	No	Yes	R (R2 <i>jags</i> [35])
Cheng 2016 [Model B] [8]	Joint classification	Yes	No	Yes ^d	Any	Yes	No	Yes	R (R2 <i>jags</i> [35])
Cheng 2016 [Model C] [8]	Joint classification	Yes	No	No	Any	Yes	Yes	Yes	R (R2 <i>jags</i> [35])
Nyaga (ANOVA) 2018 [2]	2 × 2	Yes	No	No	Any	Yes	Yes	Yes	Stan (<i>rstan</i> [36],[37] in R)
Nyaga (beta-binomial) 2018 [38]	2 × 2	Yes	No	No	Any	Yes	Yes	Yes	Stan (<i>rstan</i> [36],[37] in R)
Ma 2018 [9] ^e	Joint classification	Yes	Yes	No	Any	Yes	Yes	Yes	OpenBUGS/ WinBUGS [31], R (NMADiagT [45])
Owen 2018 [39]	2 × 2	Yes	No	Yes	Any	Yes	Yes	Yes	OpenBUGS/ WinBUGS [31]
Lian 2019 [40]	Joint classification	Yes	Yes	Yes ^u	Any	Yes	Yes	Yes	Stan (<i>rstan</i> [36],[37] in R), R (NMADiagT [45])

^a 2 × 2 data includes the number of true positives, true negatives, false positives and false negatives.

DTA-NMA in the literature

Bivariate meta-regression model *Reitsma et al. (2005)*

- A covariate for test type is used to explore sensitivity and specificity between tests
- Assumes that participants undergoing different tests are independent subgroups within each study
- Does not account for the within-study correlation between tests within study

ANOVA model Nyaga et al. (2018)

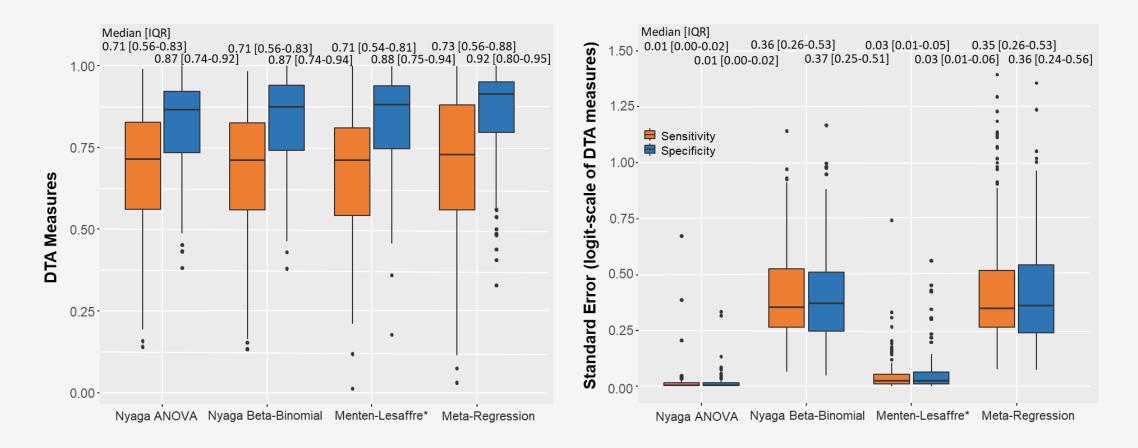
- A two-stage hierarchical model based on a two-way ANOVA model
- Allow for correlations between tests within study

Beta-binomial model

Nyaga et al. (2018)

- Sensitivity & specificity are directly modelled using a betabinomial defined in [0,1]
- Allow for correlations between tests within study

Hierarchical Latent Class model


Menten and Lesaffre (2015)

- Based on differences (contrasts) between the different tests in the network
- Allows for imperfect reference standards
- Correlations between tests from the same study are ignored

Variance component model Owen et al. (2018)

- Allows for considering multiple thresholds
- Incorporates constraints on threshold effects

Empirical assessment of the DTA-NMA methods

- Nyaga beta-binomial model estimated lower between study heterogeneity for both sensitivity and specificity
- Owen *et al.* model showed that different test thresholds included, may cause differences in results

In summary...

- Bivariate/HSROC meta-regression model:
 - It has been widely used over the years
 - Conservative approach and accessible to many review authors
 - But, it ignores the within-study correlation between tests assumes observations are independent
- More advanced methods and models have been developed
 - Most account for correlations between tests within a study
- NMA methodology of intervention studies is not applicable to DTA studies
 - Correlated observations tests are given to the same participants
 - Two effect sizes should be modelled (sensitivity & specificity) pairs of accuracy measures should be modelled in multivariate models (2K-variate, with K tests).
 - Network geometry differs single-test studies are presented (reference standard is not a node in the network)

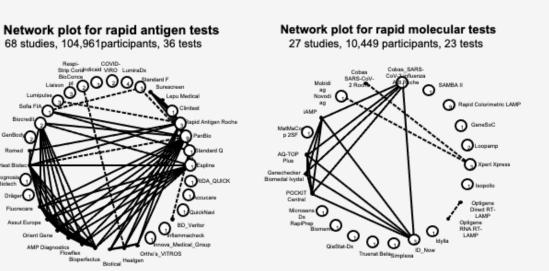
In summary...

- Software and Model Complexity
 - most of the detected models use Bayesian setting
 - programming challenges code availability problems (including convergence issues)
 - time-consuming models (e.g., dataset with antigen COVID-19 tests required >48 hours to run the Nyaga ANOVA model)
- Datasets
 - within the same study different number of participants may receive the index tests of interest (i.e., missing participant data problem)
 - correlations between tests are frequently not available in the original DTA studies (i.e. the joint classification table is rarely provided in publications)

In summary...

- There is not a single valid method for DTA-NMA analysis
 - multiple factors influence the choice of model (data availability, test thresholds, study designs, software familiarity)
 - meta-regression models ignore the within-study correlation between tests
 - selection between the methods may impact on the NMA results, especially for specificity

- Some models require joint classification tables
 - individual participant data would make this information available
 - rarely reported in DTA studies
 - difficulties in their availability-data sharing

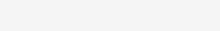


DTA-NMA Example

More than a year ago Health Canada and the Public Health Agency of Canada commissioned the team to conduct a review to determine the most sensitive and/or specific rapid test for the diagnosis of COVID-19

Veroniki et al. BMC Medicine (2023) 21:110 https://doi.org/10.1186/s12916-023-02810-0	BMC Medicine
REVIEW	Open Access
Rapid antigen-based and rapi tests for the detection of SARS review with network meta-an test accuracy studies	S-CoV-2: a rapid
Areti Angeliki Veroniki ^{1,2*} , Andrea C. Tricco ^{1,3,4} , Jennifer Watt ¹ , Sofia T. Ahmed Negm ⁶ , Amanda Doherty-Kirby ⁷ , Paul Taylor ⁷ , Carole Lunny ¹ Patrick Mallon ⁹ , David Moher ¹⁰ , Sabrina Wong ¹¹ , Jacqueline Dinnes ¹ Adrienne Chan ¹³ , Wanrudee Isaranuwatchai ¹⁴ , Bryn Lander ¹⁵ , Adrier	¹ , Jessie McGowan ⁸ , Julian Little ⁸ , ¹² , Yemisi Takwoingi ¹² , Lynora Saxinger ⁶ ,

We set up our team considering to include the policy-makers who requested the evidence, at least one clinician/content expert, two patient partners, content experts, research methodologists, and statisticians.


Sharon E. Straus^{1,2,17}

Research Question

Research question and eligibility criteria

- **Population**: Adults and/or children screened/suspected for COVID-19
- Index tests: We included studies evaluating one or more commercially available COVID-19 rapid lateral flow antigen test or rapid molecular test (providing a result in ≤1 hour) used for screening of asymptomatic individuals or the diagnosis of COVID-19 infection in symptomatic individuals
- *Target condition*: COVID-19 infection
 - **Reference Standard**: polymerase chain reaction (PCR) test
- **Study design**: We included RCTs and observational studies, providing the 2x2 table data
- **Outcome**: Sensitivity and specificity of rapid antigen and molecular tests suitable for screening and diagnosing COVID-19

Registered protocol with PROSPERO: CRD42021289712

Data analysis

- Limited to basic descriptive summary of studies
 - Country of conduct and type of rapid test
- Kept the analysis high-level:
 - Random-effects DTA meta-analysis (bivariate model)
 - Random-effects DTA-NMA (Nyaga ANOVA model)
- Estimated sensitivity and specificity for each test along with their 95% credible intervals
- Investigated potential sources of heterogeneity that may influence diagnostic accuracy using:
 - Subgroup analysis: symptom status (asymptomatic vs symptomatic), sample type (e.g., saliva, nasal swab), participant type (e.g., general public, healthcare worker), and rapid molecular test category (i.e., rRT-PCR, PT-Isothermal, RT-Lamp)
 - Meta-regression: age
- Assessed transitivity based on the distribution of the above potential effect modifiers across test comparisons

Report Findings

Used reporting guidelines to ensure transparent and complete lacksquarereporting of our research approach and findings (e.g., PRISMA-DTA and PRISMA-NMA Checklist)

Cobas_SARS-CoV-2 influenza A/B Roche

OigStat-Dv

Truenat Beta

SAMBA I

(9)

Rapid Colorimetric LAMP

GeneSoC

2 Loopamp

1 Isopollo

Optigene RNA

RT-I AMP

Optigene Direct

RT-LAME

Xpert Xpress

(1)

Network plot for rapid antigen tests Network plot for rapid molecular tests 68 studies, 104,961participants, 36 tests 27 studies, 10,449 participants, 23 tests (a) (b) Cobas SARS-LumiraD CoV-2 Roche Mobidia Lumipul _epu Medical Sofia FIA Biocred Rapid Antigen Roche MatMaCorp 2SF GenBody Romed AQ-TOP Plus Certest Biotec Genechecker Bion lvydal Prognosis Biotech RIDA_QUICK POCKIT Dräger Central Fluorecare MicrosensDx RapiPrep OuickNa (1)Assut Europe (1)Biomeme Orient Ge $\begin{pmatrix} 1 \end{pmatrix}$

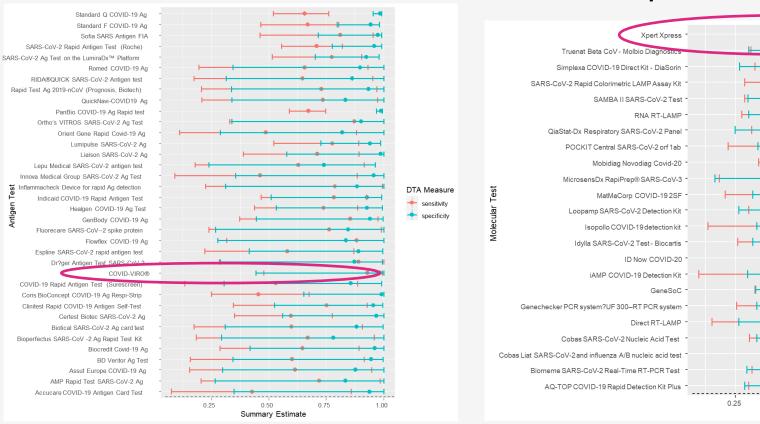
ova Medical Grou

Ortho's VITROS

Healgen

Biotical

Veroniki AA et al. BMC Med 2023


AMP Diagnostic

Flowflex

Bioperfectus

Summarized results DTA-NMA results

Rapid antigen tests

DTA Measure

🔶 sensitivity

+ specificity

0.50

Summary Estimate

0.75

1.00

() Cochrane

Report Findings

 Used reporting guidelines to ensure transparent and complete reporting of our research approach and findings

(e.g., PRISMA-DTA and PRISMA-NMA Checklist)

Summarized results from the bivariate DTA meta-analysis model

			Summary estimates		Heterogeneity standard deviation	
Туре	Test # Studies (# patients)		Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity	Specificity
Rapid molecular test	Xpert Xpress	5 (763)	0.98 (0.94, 1.00)	0.98 (0.94, 0.99)	0.79	0.53
Rapid antigen test	Standard Q COVID-19 Ag	13 (8740)	0.72 (0.53, 0.86)	0.99 (0.98, 1.00)	1.49	1.82
	PanBio COVID-19 Ag Rapid test (Abbott)	16 (32,151)	0.72 (0.61, 0.81)	0.99 (0.99, 1.00)	0.98	1.72
	SARS-CoV-2 Rapid Antigen Test (Roche)	7 (6065)	0.77 (0.55, 0.90)	0.99 (0.96, 1.00)	1.33	1.52
	Standard F COVID-19 Ag	5 (6428)	0.65 (0.50, 0.78)	0.98 (0.97, 0.99)	0.67	0.41

There is still a lot to explore!

- Explore which factors impact on the performance of the DTA-NMA methods
- Extend the ranking metrics for multiple outcomes to DTA-NMA methods
- **DTA-NMA assumptions**: Appropriate methods are needed to explore the consistency assumption in DTA-NMA accounting for both sensitivity and specificity
- New methods are necessary to deal with and account for different study designs in a DTA-NMA

Acknowledgements

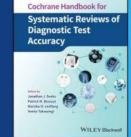
Ridhi Agarwald · Eirini Pagkalidou · Gerta Rücker · Dimitris Mavridis · Yemisi Takwoingi

Diagnostic test accuracy network meta-analysis methods: A scoping review and empirical assessment

Areti Angeliki Veroniki 🙁 ^{a,b,1} 🖾 · Sofia Tsokani ^{c,1} · Ridhi Agarwal ^d · Eirini Pagkalidou ^e · Gerta Rücker ^f · Dimitris Mavridis ^{c,g} · Yemisi Takwoingi ^{d,h} Show less

Affiliations & Notes 🔨 🛛 Article Info 🗸

- Knowledge Translation Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, East Building, Toronto, Ontario M5B 1T8, Canada
- b Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- c Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece
- d Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- e Department of Hygiene, Social-Preventive Medicine and Medical Statistics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- f Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center University of Freiburg, Stefan-Meier-Strasse 26, 79104 Freiburg, Germany
- g Paris Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- h NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
- 1 joint first authors: Areti Angeliki Veroniki, MSc, PhD Sofia Tsokani, MSc.


WILEY

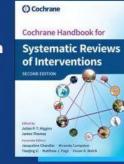
ENABLING DISCOVERY | POWERING EDUCATION | SHAPING WORKFORCES

Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy

Jonathan J. Deeks, Patrick M. Bossuyt, Mariska M. Leeflang, Yemisi Takwoingi

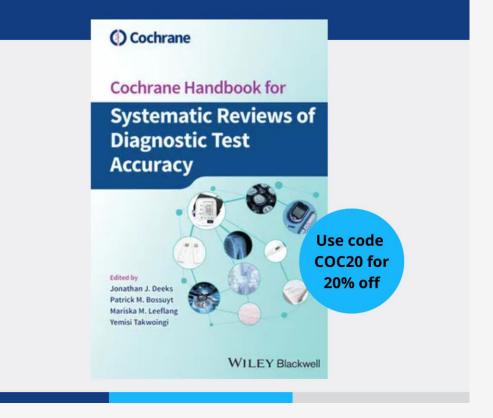
ISBN: 978-1-119-75618-7 E-Book | June 2023 | 432 Pages A guide to conducting systematic reviews of test accuracy

() Cochrane


Use promo code COC20 for 20% at wiley.com expires 01/01/2025

Cochrane Handbook for Systematic Reviews of Interventions, 2nd Edition

Julian P. T. Higgins, James Thomas, Jacqueline Chandler, Miranda Cumpston, Tianjing Li, Matthew J. Page, Vivian A. Welch


ISBN: 978-1-119-53665-9 E-Book | September 2019| 736 pages The revised edition of the Handbook offers the only guide on how to conduct, report and maintain a Cochrane Review

Use promo code COC20 for 20% at wiley.com expires 01/01/2025

WILEY

A guide to conducting systematic reviews of test accuracy

